Jaramillo Lab

Wiki (private)

ISSB

The Jaramillo Lab (http://synth-bio.org) is based at the University of Warwick (main affiliation) and at the ISSB. It is widely believed that curing complex diseases will require new approaches to harness biological complexity in a context of limited knowledge. The Synthetic Biology discipline has recently emerged with the aim of providing such enabling tools, by borrowing strategies from the engineering of complex systems (made of millions of components). Contrary to such standard engineering disciplines, biological systems are made of millions of components, most of them with still unknown physical and chemical properties. Moreover, even if it existed the computation capability to properly simulate a biological system made of even two or three biomolecules in the computer, we would only be able to analyse the phenotype of a handful of sequences. Maybe the exponential increase of computational power and knowledge will allow us in the next years to come to predict the behaviour of synthetic biological systems. Meanwhile, the approach to engineer (but also to understand) biological systems has to rely on simplifying as much as possible biological molecules by creating a "caricature" versions of them, synthetic molecules. Such synthetic molecules will only share with their natural counterparts the main molecular mechanism of function, otherwise they will be very different. This is done by de novo engineering methods. We propose to use de novo engineering as a way to redesign biological systems to greater reproducibility. As biomolecules have amorphous shapes with complex charge distributions across their surface, we hypothesise that a random molecule will not interact strongly with other molecules in the cell, minimising the occurrence of unknown interactions and, therefore, maximising its predictability. There exist computational and experimental approaches to de novo engineering. The former are very limited to very special cases where the lack of molecular knowledge and computational power is not limiting, for instance, the design of RNA circuits. The later are limited by the lack of molecular, systemic and organism knowledge and by the slow way genotype space is sampled (evolutive power).

Our lab is developing new technologies (computational and experimental) for the de novo engineering of biomolecules and their circuits that will facilitate a new generation of therapeutic tools based on multi-component synthetic molecules sensing and actuating various factors in sick cells, tissues and organisms. Our computational methodologies have already produced the proof-of-concept validations necessary to encourage its wide use in the community, which we are fostering by producing protocols, web-servers, open source codes and reviews (check our website). We are also working on the development of experimental technologies for the de novo engineering of biological systems. For this, we are coordinating the EVOPROG consortium, where we are programming phage and bacteria to compute our combinatorial optimisation algorithms (for protein, RNA and transcriptional/metabolic network design) by constructing and using a high-throughput droplet device for the directed evolution of biomolecules de novo, integrating for the first time in silico and in vivo evolution. For this, we are developing a general-purpose 3D biochip utilising computational and fluidics automation which could also be applied to perform in vivo molecular biology operations in high-throughput (including time-dependent characterisations of gene expression levels using fluorescent proteins).

Our work will contribute to accelerate the design cycle for the next-generation of synthetic regulatory circuits. This is done by: i) extending the available toolkit of biological parts and circuits, iii) creating hybrid protein-RNA (nucleoprotein) circuits with increased performance, ii) developing new tools for the in vivo characterisation in E. coli of synthetic nucleoprotein circuits in a high-throughput manner using microfluidics time-lapse microscopy, iii) modelling and prediction of a circuits’ dynamics under external forcing at the single-cell level, iv) create a biological test platform where circuits and their parts could be measured and debugged prior being implemented in more complex cellular backgrounds. This is important for Synthetic Biology because we are establishing the foundations for the next-generation of synthetic regulatory circuits. There are already a large number of protein and RNA domains with known function and structure that could work interchangeable as switchable modules. Our current computational tools for biomolecular function prediction can provide a genotype-phenotype linkage for many cases, opening the door to the computational design of circuits composed of such modules. Only recently it was found that computational design was able to produce functional circuits in vivo in several cases involving functional modules such as ribosome-binding sites, transcription terminators, or ribozymes. We are applying our methodology to engineer novel riboswitches for metabolic engineering within the PROMYS consortium. We have an appropriate group to do this work because we have already produced the first computational methodology to design riboregulators in living cells, which we have also validated in vivo with cooperative riboregulators, ribozyme-containing riboregulators and anti-terminators, which have never been done before. In this way, we are developing a general methodology for the de novo engineering of synthetic RNA parts and circuits working robustly as targeted in a given cellular context. We are constructing in E. coli biological devices able to respond in a complex way after processing a suitable time-dependent signal, where use custom characterisation methods to measure gene expression dynamics at the single-cell level using microfluidics, automated time-lapse microscopy and automated image analysis.

Interested in working with us?

Blog Posts

News
  • We have moved to the University of Warwick and we will update the website soon
  • EVOPROG consortium (FP7-ICT), coordinated by Alfonso Jaramillo, gets funded.
  • We participate as partner in the PROMYS (FP7-KBBE) consortium that recently also got funded.
  • 4 new articles got published in 2013
  • The CNRS press highlights our two PNAS papers in Vers une automatisation de la biologie de synthèse
  • We published in ACS Synth Bio the first Full Biodesign Automation methodology able to design unsupervised the nucleotide sequence of genetic circuits with targeted dynamics: AutoBioCAD software. http://dx.doi.org/10.1021/sb300084h
  • We got 3rd price in the Synthetic Biology Gen9 contest!
  • Teaching a computer to design by itself fully synthetic riboregulators working in bacteria? Synth-Bio full design automation! Rodrigo et al. PNAS 2012
  • Another PNAS: the first automated methodology for the computational design of genomes. Refactoring E. coli global regulation. Synth-Bio full design automation! Carrera et al. PNAS 2012
  • 1st report of a computer designing by itself the nucleotide sequence (or even a degenerate sequence library) of a gene circuit. Synth-Bio full design automation! Rodrigo et al. NAR 2011